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Abstract—Research efforts to analyze biomolecular properties
contribute towards our understanding of biomolecular function.
Calculating non-bonded forces (or in our case, electrostatic
surface potential) is often a large portion of the computational
complexity in analyzing biomolecular properties. Therefore,
reducing the computational complexity of these force calculations,
either by improving the computational algorithm or by improving
the underlying hardware on which the computational algorithm
runs, can help to accelerate the discovery process. Traditional
approaches seek to parallelize the electrostatic calculations to run
on large-scale supercomputers, which are expensive and highly
contended resources.

Leveraging our multi-scale approximation algorithm for
calculating electrostatic surface potential, we present a novel
mapping and optimization of this algorithm on the graphics
processing unit (GPU) of a desktop personal computer (PC).
Our mapping and optimization of the algorithm results in a
speed-up as high as four orders of magnitude, when compared to
running serially on the same desktop PC, without deteriorating
the accuracy of our results.
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I. INTRODUCTION

Electrostatic interactions are of utmost importance in the
analysis of the structure of biomolecules [1]–[3] as well as
their functional activities like ligand binding [4], complex
formation [5] and proton transport [6]. The study of the
electrostatics phenomenon of a macromolecule has used the
linear Poisson-Boltzmann (PB) [7] method for computing
the electrostatic surface potential produced by a molecule.
Though PB computes the potential on the atomic scale, it is
highly computationally expensive [8]. Closed-form analytical
approximations reduce the computational complexity while
maintaining accuracy, but still continue to be a computational
bottleneck due primarily to their long-range nature [9].
Consequently, more efficient algorithms, such as the spherical
cut-off method [10], fast multipole approximation [11], and
particle mesh Ewald (PME) method [12], have been proposed
to reduce the computational complexity. These algorithms,
in turn, have also been parallelized to run on large-scale
supercomputers in order to reduce execution times further.

We propose a hybrid approach that combines the algorithmic
efficiency of a multi-scale approximation algorithm called
hierarchical charge partitioning (HCP) [13] with the massively
parallel architecture of a graphics processing unit (GPU) in a
desktop personal computer (PC) in order to deliver up to four
orders of magnitude of speed-up, when compared to running

on a traditional serial processor, thus rivaling the performance
of traditional supercomputers.

HCP is an approximation algorithm based on the natural
partitioning of biomolecules as explained in Section III-A. It
has certain benefits over both the PME and spherical cut-off
methods. PME is presently not suitable for implicit solvent
simulations and requires an artificial periodicity to be imposed
on the system [14]. While the spherical cut-off method is
inherently the simplest algorithm, its accuracy is not as good
as HCP.

II. RELATED WORK

Recently, several molecular modeling applications have
used the GPU to speed-up electrostatic computations.
Rodrigues et al. [15] and Stone et al. [16] demonstrate that
the estimation of electrostatic interactions can be accelerated
by the use of spherical cut-off method and the GPU. In [17],
Hardy et al. used a multi-level summation method on the
GPU. Each of the aformentioned implementations artificially
maps the n atoms of a molecule onto a m-point lattice grid
and then applies their respective approximation algorithm. By
doing so, they reduce the time complexity of the computation
from O(nn) to O(nm). In contrast, we use HCP, which
performs approximations based on the natural partitioning of
biomolecules. The advantage of using the natural partitioning
is that even with the movement of atoms during molecular
dynamics simulations, the hierarchical nature is preserved,
whereas with the lattice, atoms may move in and out of the
lattice during the simulation.

Anandakrishnan et al. present a GPU implementation that
accelerates the computation of electrostatic surface potential
using only a single level of approximation of HCP on an
AMD GPU [18]. Unfortunately, due to architectural and
system software limitations of the AMD GPU, they could only
incorporate one level of HCP approximation. In the present
work, we use NVIDIA GPUs so as to incorporate three levels
of HCP and extensive optimizations in order to deliver a four
order-of-magnitude speed-up.

GPUs have been found to be useful not only for molecular
modeling but also for molecular dynamics. Pande et al.
[19], developed a GPU-based protein folding client called
openMM. More recently, GPU-accelerated implementations
of the NAMD molecular dynamics simulation package have
been reported [20]. These algorithms determine cut-off pair
interactions between atoms, ultimately resulting in forces that
determine the dynamics of simulated molecules.
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Fig. 1. Example of Natural Partitioning in Biomolecules

III. BACKGROUND

Here we discuss the methods that we used to compute the
electrostatic surface potential of a molecule as well as the
architecture of the GPU used in our experiments.

A. Electrostatics and Hierarchical Charge Partitioning

We use an Analytic Linearized Poisson-Boltzmann (ALPB)
[21] model to perform the electrostatic computations. Equation
(1) computes the electrostatic potential at a point on the surface
of the molecule due to a single point charge, q. The potential at
each vertex on the surface can be computed as the summation
of the potentials generated by all charges in the system. If
there are P vertices, the total surface potential can be found
as the summation of the potential at each vertex. Gordon et
al. analyze the effect of salts in the solvent and assess the
accuracy of said model [9].
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Computing the potential at P vertex points on the surface
results in a time complexity of O(NP ) where N is the number
of atoms in the molecule. To reduce the time complexity,
we apply an approximation algorithm called hierarchical
charge partitioning (HCP), which reduces the upper bound of
computation to O(P logN).

HCP strives to accelerate electrostatic computations via
the natural partitioning of biomolecules into their constituent
components. As shown in Figure 1, a biomolecule can be
viewed as being made up of a number of molecular complexes,
which consist of a number of strands, which then consist
of nucleotide residues. Atoms belong to the lowest level in
this hierarchy. Each level in the hierarchy corresponds to an
incremental level of approximation that can be applied.

Each constituent component, i.e., complex, strand and
residue, is approximated by fewer point charges and the
electrostatic effect due to distant components is calculated
using these point charges instead of all the atoms present
in that component, thereby reducing the total number of
computations to be performed.

Algorithm: HCP
for v = 0 to #Vertices do

for c = 0 to #Complexes do
if (dist(v, c) >= 3rd threshold) then

potential += calcPotential(v, c)
else

for s = 0 to #Strands in c do
if (dist(v, s) >= 2nd threshold) then

potential += calcPotential(v, s)
else

for r = 0 to #Residues in s do
if (dist(v, r) >= 1st threshold) then

potential += calcPotential(v, r)
else

for a = 0 to #Atoms in r do
potential += calcPotential(v, a)

The decision to use the exact charges or the approximate
charge of the component is made by comparing the distance
between the vertex in consideration and the component as
shown in the HCP algorithm. If the distance is greater than the
threshold for that level, then the approximate charge is used.

B. GPU Architecture and Programming Interface

Originally, the GPU was dedicated hardware to perform
graphics routines extraordinarily fast. In recent years however,
the GPU architecture has evolved into a general-purpose



Fig. 2. Mapping of HCP onto a GPU

processor enabling programming models such as the Compute
Unified Device Architecture (CUDA) for NVIDIA GPUs.

Data-parallel computations such as the electrostatic surface
potential are ideally suited for the GPU. However, given that
the GPU has more transistors devoted to such computations
than for caching and managing control flow, memory accesses
and divergent branches can be particularly expensive on the
GPU. Thus, a key aspect of GPU programming is to hide
the latency of memory accesses with computation via massive
multi-threading. The GPU allows thousands of threads to be
initiated such that when one thread is waiting on a memory
access, other threads can perform meaningful computations.

A key architectural feature of NVIDIA GPUs is its memory
hierarchy. For example, in a GT200 GPU, each streaming
multiprocessor (SM) possesses a set of 32-bit registers and
shared memory, both located on-chip. In addition, the GPU has
a read-only constant cache. Finally, the GPU device memory
consists of thread local1 and global memory, both of which
reside off-chip.

CUDA provides a C-like language with an application
programming interface (API) for the NVIDIA GPU. A CUDA
program is executed by a calling a function known as ‘kernel’
from the host, i.e., a CPU. CUDA logically arranges threads
into blocks, which are in turn grouped into a grid. Each thread
has its own ID, which provides for one-to-one mapping. Each
block of threads is executed on a SM and the threads within
a block may safely share data via shared memory.

Additional details on the NVIDIA GPU architecture and
CUDA programming environment can be found at [22].

IV. APPROACH

Calculating the electrostatic surface potential is inherently
data parallel in nature. That is, the potential at one point on the

1The name ”local” is actually misleading as it is not actually located
on-chip.

surface can be computed independently from the computation
of potential at some other point on the surface.

Figure 2 shows the execution path of our algorithm, both
on CPU and GPU. The algorithm first offloads the vertex
coordinates at which the potentials are to be calculated along
with the coordinates of all molecular components and their
approximated point charges to the global memory of the GPU.
Each thread in the GPU kernel code is then assigned the task of
computing electrostatic potential at one vertex using Equation
(1). Specifically, each thread copies its vertex coordinate from
global memory to shared memory, resulting in a significant
reduction in the number of global memory loads, as explained
in Section IV-E. Next, the HCP algorithm is applied at the
vertex in question and the result stored back to global memory.
This is done by all threads in parallel. After the threads finish,
the computed potential at each vertex is then copied back to
CPU memory, where a reduce (sum) operation is performed
to calculate the total molecular surface potential. Our analysis
shows that the computation time on the GPU outperforms the
time required to copy data to and fro between the host and
the device. Hence, one needs to optimize the computation in
order to reduce execution time.

In [23], Ryoo et al. illustrate that writing a program
optimized for performance on the GPU takes non-trivial effort
as the optimization space is very large. In subsequent sections,
we describe our approach towards massively accelerating the
calculation of electrostatic surface potential.

A. Boundedness
We evaluated the boundedness of our application on the

GPU in order to reduce the optimization search space. To do
so, we studied the change in execution time of the application
with varying GPU core and memory frequencies via Coolbits,
a utility that allows tweaking of features via the NVIDIA
driver control panel.



In Figure 3a, we freeze the GPU memory frequency at the
default value of 1107 MHz and vary the GPU core frequency.
As expected, the execution time decreases steadily with
the increase in the clock frequency. However, this decrease
asymptotes around 550 MHz. Increasing clock frequency
further, even over-clocking has no effect on the execution
time. Thus, the application is compute bound when the clock
frequency is 550 MHz or less but memory bound thereafter.
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Fig. 3. Memory Boundedness on the GPU

To corroborate our claim, we plot Figure 3b, where the GPU
core frequency is kept constant at the default value of 602
MHz and the memory frequency is varied. The execution time
decreases steadily as the GPU memory frequency increases.
In this case, even overclocking the GPU memory (i.e.,
greater than 1107 MHz) reduces the execution time. Thus,
the application is memory bound at the default GPU core
frequency and the various memory frequencies of the GPU.

Because the application must wait on memory requests to
complete and not on the computations to finish, optimizations
that reduce the number of global memory accesses would
likely improve performance. Optimizations like the use of
fast math library functions and loop unrolling would not
help to improve performance as they merely enable faster
computations. Presented below are the optimizations that we
performed.

B. Reducing Parameter Size
A limitation of the CUDA GPU kernel is that it restricts

the parameter size to 256 bytes. To use HCP, it is required
to pass many data structures to the GPU kernel. However,

the combined size of pointers to these structures exceeded
256 bytes and hence, it was not possible to pass all the
data-structures to the kernel. To overcome this problem, we
packed all the necessary data structures in a structure and then
passed the address of that structure to the kernel. This not
only allowed us to execute the kernel with all the required
parameters, but it also reduced the register utilization per
thread on the GPU, which in turn, enabled us to launch more
threads, resulting in better occupancy of the GPU.

C. Reducing Global Load and Store Transactions

If all threads in a half warp 2 access data from contiguous
memory locations, though not necessarily consecutive, then
the number of memory transactions required is reduced by
a factor of 16, hence increasing the bandwidth of global
memory [18]. To take advantage of this GPU architectural
feature, we transformed all the data structures from arrays of
structures to arrays of primitives so that we could have a linear
arrangement in memory. Moreover, if all the threads in a half
warp access data from only one half of the data segment in
memory, then the transaction size is reduced by half.

D. Using Constant Memory

A constant variable should be stored in constant3 memory
rather than global memory. This results in relatively fewer
accesses to global memory, hence improving performance.
We took advantage of the presence of cache-like constant
memory and stored all the constants in it. This optimization
technique delivered a 1.2x speedup over the non-optimized
implementation.

E. Using Shared Memory

HCP reuses vertex coordinates for the computation of
distance with the molecule component at each approximation
level. Therefore, in worst case when no approximation could
be applied, same data is accessed four times from global
memory. To reduce these memory accesses, we have used
shared memory available per SM on the GPU to store the
vertex coordinates at which the potential would be calculated
by that SM. The percentage reduction in the number of
global memory loads due to the use of shared memory with
and without HCP approximation is shown in Table I. The
number of memory accesses were taken from the CUDA
Visual Profiler provided by NVIDIA.

From the table, we note that there is a 50% reduction in
global memory loads for all structures when the potential is
calculated without HCP. In this case, coordinates of vertices
and that of atoms, are required from the global memory. In
order to access the atom coordinates, one has to cycle through
the residue groups. Therefore, when we do not use shared
memory, the vertex coordinate is loaded twice, once for residue

2A “warp” is a group of 32 threads and it is the smallest unit of execution
on a NVIDIA GPU.

3To be clear, this is the cached constant memory which is chip local, not
texture memory.



and once for the atom, though when shared memory is used,
the vertex is loaded only once.

However, with HCP, amount by which the number of
loads are reduced varies across structures which can be
reasoned as follows. For each structure the effective number
of computations to be performed are different. For example,
if for a structure, 1st level approximation could be applied
use of shared memory restricts the number of global memory
loads to one, i.e., copying vertex coordinates from global
memory to shared memory. While if shared memory would
not have been used, three global memory loads would have
been required to copy vertex coordinates at each of the three
component levels. From the table, we can guess that least
number of components could be approximated in case of virus
capsid, thus, maximum percentage reduction. Use of shared
memory resulted in providing about 2.7x speedup over the
non-optimized implementation.

TABLE I
% REDUCTION IN THE NUMBER OF GLOBAL MEMORY LOADS

Structure Without HCP With HCP
H Helix myoglobin 50% 32%
nucleosome core paricle 50% 62%
chaperonin GroEL 50% 84%
virus capsid 50% 96%

V. EXPERIMENTAL SETUP

To illustrate the scalability of our implementation, we have
used four different input structures with varied sizes. The
characteristics of these structures are presented in Table II. The
host machine consists of an E8200 Intel Quad core running
at 2.33 GHz with 4 GB DDR2 SDRAM. Programming and
access to the GPU was provided by CUDA 3.2 toolkit and
SDK with the NVIDIA driver version 256.40. We ran our
tests on a NVIDIA GTX280 graphics card with GT200 GPU
which belongs to compute capability 1.3.

TABLE II
CHARACTERISTICS OF STRUCTURES

Structure # Atoms # Vertices
H helix myoglobin, 1MBO 382 5,884
nuclesome core particle, 1KX5 25,086 258,797
chaperonin GroEL, 2EU1 109,802 898,584
virus capsid, 1A6C 476,040 593,615

VI. RESULT

In this section, we present an analysis of performance as
well as accuracy of our computational kernel on both CPU and
GPU platforms. Section VI-A presents the execution times of
three different CPU versions and one GPU version; (i) basic
serial CPU version, (ii) CPU serial version optimized with
-O3 flag of the gnu/gcc compiler, (iii) CPU serial version
optimized with hand-tuned SSE instructions and (iv) CUDA
optimized GPU version. Execution times with and without the
use of HCP approximation algorithm are presented. All the
numbers presented are an average of 10 runs performed on

each platform. For HCP, the 1st level threshold was set to
10Å and the 2nd level threshold was fixed at 70Å.

In Section VI-B, we demonstrate how accurate our results
are when compared to the CPU implementation.

A. Performance
In Table III, we present the execution times on both CPU

and GPU. From the table, we note that for non HCP, speedup
of around 2x over basic CPU version is achieved by using
the -O3 compiler flag while almost another 2x speedup is
obtained when optimized with hand-tuned SSE. SSE uses
a 128-byte vectorized float data structure which consists of
four 32-byte floats, thus, enabling it to perform the same
computation on these four floats in parallel. However, there is a
hidden cost for vectorizing the code which is why our reported
speedup is not close to 4x. When HCP is used, the speedup is
only 1.4x because HCP reduces the number of computations
to be performed by a large amount, not sufficient to overcome
the cost of creation of the vector.

TABLE III
EXECUTION TIMES (SECONDS)

CPU (Basic) CPU (-O3) CPU (-O3+SSE) GPU
Mb.Hhelix non HCP 0.43 0.21 0.09 0.06
Mb.Hhelix HCP 0.20 0.09 0.03 0.05
nuclesome non HCP 1376.00 657.00 371.00 3.30
nuclesome HCP 45.00 21.00 13.00 0.24
2eu1 non HCP 21395.00 11048.00 5752.00 53.00
2eu1 HCP 223.00 110.00 73.00 1.24
capsid non HCP 62499.00 29673.00 16921.00 150.00
capsid HCP 115.00 50.00 44.00 0.89

From the table, we note that the speedup due to GPU alone
when compared against non HCP CPU version, is almost
constant for all three structures barring Mb.Hhelix. This is
due to the fact that Mb.Hhelix is a very small structure and
not enough threads are required to be executed on the GPU,
resulting in few SMs to remain idle and hence, under-utilizing
the GPU. For other structures the threshold of the number of
threads to be executed is met and almost similar speedup is
achieved for both -O3 and -O3+SSE. The observed speedup
is around 200x and around 110x respectively.

Total application speedup due to the combined power of
GPU and HCP increases with the increase in the size of the
structure. Virus capsid has the largest number of atoms among
the four, therefore, it reports largest speedup also; 33,000x in
case of -O3 and 19,000x in case of -O3+SSE. HCP introduces
a large number of divergent branches because of a check that
has to be performed to apply the approximation. This adversely
affects performance on the GPU, recollect that a GPU has
more transistors devoted to computation and fewer devoted to
managing control-flow as mentioned in Section III-B. As the
number of molecular components in the structure increases,
the number of computations to be performed also increases
and hence, the cost of introduction of divergent branches is
more effectively overcome.

For the non HCP version of the algorithm, divergent
branches do not come into play as all computations are exact



atom-atom, hence, similar speedup for all structures. Divergent
branches are also the reason that the speedup achieved due to
HCP is much more on the CPU than on the GPU. If we look at
the execution times of virus capsid in Table III, HCP achieves
a speedup of 380x for -O3+SSE version on CPU, while on
the GPU, only 170x is achieved.

TABLE IV
RELATIVE RMS ERROR

Structure Version Relative RMSE

H helix myoglobin
CPU with HCP 0.215821
GPU 0.000030
GPU with HCP 0.236093

nuclesome core particle
CPU with HCP 0.022950
GPU 0.000062
GPU with HCP 0.022853

chaperonin GroEL, 2eu1
CPU with HCP 0.008799
GPU 0.000042
GPU with HCP 0.008816

virus capsid
CPU with HCP 0.015376
GPU 0.000173
GPU with HCP 0.015273

B. Accuracy
Because we used single-precision arithmetic in our GPU

experiments, we present an estimate of how much it affects
the accuracy of the results. We compute the relative root mean
squared (RMS) error against double precision on the CPU and
present the results in Table IV. From the table, we note that
the error introduced by the GPU itself is fairly negligible when
compared to the error introduced by HCP on the CPU. Thus,
the total error due to HCP and GPU is almost equivalent to
the error on the CPU and hence, we can safely conclude that
single precision on the GPU does not jeopardize the accuracy
of our results. The errors presented can be deemed acceptable
for the computation of molecular surface potential but may
be unsatisfactory for molecular dynamics as in that case, the
error would accumulate after each time step of simulation.

VII. CONCLUSION

Due to the need to understand biomolecular function,
analyzing biomolecular properties, such as non-bonded forces,
is of critical importance. In this paper, we focus specifically
on calculating the electrostatic surface potential of non-bonded
forces as it is a large portion of the computational complexity.
Approaches to reduce this complexity include improving
the algorithm or improving the underlying hardware upon
which the algorithm is run. In this paper, we do both, and
hence, present the effect of using a multi-scale approximation
algorithm for calculating electrostatic surface potential and
mapping it onto a GPU. The end result is a 19,000-fold
speed-up in calculating the electrostatic surface potential on
a GPU over a traditional hand-tuned CPU implementation.
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