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Abstract—B+ tree structured index searches are one of the
fundamental database operations and hence, accelerating them
is essential. GPUs provide a compelling mix of performance per
watt and performance per dollar, and thus are an attractive
platform for accelerating B+ tree searches. However, tree
search on discrete GPUs presents significant challenges for
acceleration due to (i) the irregular representation in memory
and (ii) the requirement to copy the tree to the GPU memory
over the PCIe bus.

In this paper, we present the acceleration of B+ tree searches
on a fused CPU+GPU processor (an accelerated processing unit
or APU). We counter the aforementioned issues by reorganizing
the B+ tree in memory and utilizing the novel heterogeneous
system architecture, which eliminates (i) the need to copy the
tree to the GPU and (ii) the limitation on the size of the tree
that can be accelerated. Our approach exploits the coarse-
grained parallelism in tree search, wherein we execute multiple
searches in parallel to optimize for the SIMD width without
modifying the inherent B+ tree data structure. Our results
illustrate that the APU implementation can perform up to 70M1

queries per second and is 4.9x faster in the best case and 2.5x
faster on average than a hand-tuned, SSE-optimized, six-core
CPU implementation, for varying orders of the B+ tree with
4M keys. We also present an analysis of the effect of caches
on performance, and of the efficacy of the APU to eliminate
data-copies.

Keywords: B+ Tree; APU; Coarse-Grained Parallelism; AMD;
Performance Acceleration.

I. INTRODUCTION

B+ trees continue to be popular in database applications
due to their remarkable efficiency in retrieval of the stored
data [1]. High-throughput, read-only index searches are
gaining traction in fields like audio-search and video-copy
detection [2], [3]. Traditionally, database operations were
bottlenecked by disk bandwidth, so increasing the compu-
tational capacity of the processor did not have a substantial
impact on the performance of index searches. However, the
increase in memory capacities over the years now allows
many database tables to reside in memory, thereby eliminat-
ing the disk I/O and bringing the computational performance
to the forefront.

Graphics processing units (GPUs) are being adopted in-
creasingly due to their remarkable performance-price ra-

1Throughout this article K refers to thousand, M refers to million, and
B refers to billion.

tio [4]. GPUs that reside across the PCIe bus, known as
discrete GPUs and referred to as dGPUs henceforth, are
effective in accelerating applications that (i) demonstrate
regular memory access patterns and (ii) amortize the cost
of copying data to the dGPU. Researchers have recently
employed dGPUs to accelerate several critical database
primitives like scan, sort, join, and aggregation [5], [6].
Unlike these primitives, index searches on dGPUs present
significant challenges due to (i) the irregular representation
in memory and (ii) the requirement to copy the tree to the
dGPU [7].

Irregular memory representation is an artifact of using
dynamic memory allocators for building the tree on the CPU.
Today’s dGPUs do not have a direct mapping to the CPU
virtual address space, thereby requiring indirect links in the
tree to be converted into relative offsets. Once the links are
converted, traversing a tree residing in system memory from
the dGPU does not yield optimum performance, requiring
the tree to be copied to dGPU. The process of copying the
tree, based on the size, can take orders of magnitude longer
than performing the search itself. A side-effect of copying
the tree is that one is always limited by the memory size on
a dGPU, which is at most 8 GB.

In this paper, we accelerate B+ tree structured index
searches on a fused CPU+GPU processor (or APU). APUs
are AMD’s implementation of the Heterogeneous Systems
Architecture (HSA) and help eliminate data-copies by com-
bining the general-purpose x86 CPU cores with the pro-
grammable vector-processing engines of a GPU on a single
silicon die [8]. To the best of our knowledge, we are the first
to implement index searches on the APU. We overcome the
issue of irregular memory representation of the B+ tree by
developing our own memory allocator that ensures all nodes
of the tree are laid out contiguously in memory. We do not
alter the fundamental data structure; we merely alter parts
of its layout. The tree is then traversed using offsets into the
contiguously allocated memory region.

One index search on the B+ tree is independent from
all other index searches. This paradigm perfectly suits the
SIMD nature of the APUs and hence, enables us to exploit
the coarse-grained parallelism in index searches. We perform
a detailed experimental analysis on the effect of divergence
as well as the order (fan-out) of the B+ tree in our imple-



x86	  
Cores	   GPU	  

Vector	  
Cores	  

DRAM	  
Controller	  

Host	  Memory	  

System	  Request	  
Interface	  (SRI)	  

xBar	  

Link	  
Controller	  

MCT	  

DRAM	  
Controller	  

PlaForm	  Interfaces	  

UNB 

RMB 

FCL 

GPU	  Frame-‐Buffer	  

System Memory 

Figure 1. Block diagram of the AMD A10 APU architecture, codenamed
Trinity [10]. UNB - Unified Northbridge, MCT - Memory Controller, RMB
- Radeon Memory Bus, FCL - Fusion Compute Link

mentation. We illustrate that the divergence affects the APU
as well as the CPU. We mitigate thread-divergence by first
sorting all the keys to be searched [9]. The presence of a
prefetcher on the CPU and the difference in the behavior
of caches leads the CPU and the APU to yield optimum
performance for different orders of the B+ tree.

Specifically, the APU performs best when a node of the
tree fits exactly in a cache-line, whereas best performance
on the CPU is achieved when a node is substantially larger
than the cache-line size. We also present an analysis of
data-copies and conclude that a tree should at least be used
54 times to amortize the cost of copying it to the dGPU. Our
results indicate that the APU implementation can perform up
to 70M queries per second for a B+ tree with 4M keys, and is
4.9x faster in the best case and 2.5x faster on average than a
hand-tuned, SSE-optimized, six-core CPU implementation.
The APU outperforms the CPU even when the tree is not
copied, illustrating its capability in eliminating the data-
copies and ameliorating the constraint on the size of the
tree that can be accelerated.

In the rest of this paper, Section II provides a background
on the AMD APU architecture and B+ trees. Section III
explains our APU implementation and the memory allocator
used to generate the transformed memory layout of the
B+ tree, followed by how we mitigate thread-divergence.
Section IV discusses the experimental results and presents
an analysis on (i) the effect of caches and (ii) the cost of
data-copies. Section V presents the related work. Section VI
proposes future work and presents a conclusion.

II. BACKGROUND

In this section, we present a background information on
the APUs as well as the B+ tree data structure.

A. Accelerated Processing Units, or APUs
Fundamentally, an APU combines general-purpose scalar

and vector processor cores on a single silicon die, thereby

forming a true heterogeneous computing processor. Figure 1
depicts a block diagram of the AMD A10 APU architecture,
codenamed Trinity (i.e., the APU in its latest incarnation).
An important aspect of the APU is that it allows both the x86
CPU and the vector GPU cores to access system memory via
the DRAM controllers, albeit through different paths inter-
nally. This architectural artifact allows the APU to alleviate
the fundamental PCIe constraint that has traditionally limited
the performance on a dGPU. The APU also consists of an
I/O controller, a unified video decoder, a display output, and
bus interfaces, all on the same die.

The GPU cores on the APU can access both the cached
and uncached regions of the system memory. They do so via
two different memory buses called the Fusion Compute Link
(FCL) and the RadeonTMMemory Bus (RMB), respectively.
The FCL is 128 bits wide in each direction and connects
the graphics memory controller to the unified northbridge
(UNB). The UNB contains the system request interface
(SRI), which is capable of snooping the caches. In-case of a
cache miss, system memory can be accessed via the DRAM
controllers from the UNB. The RMB is 256 bits wide in each
direction, per memory channel, and directly connects the
graphics memory controller to the DRAM controllers. The
APU also provides a dedicated GPU framebuffer, analogous
to device memory on a dGPU, for full bandwidth access. The
framebuffer is a region of the system memory managed by
the GPU cores and accessed using the RMB. It bypasses the
cache coherency mechanism, so is the fastest path to system
memory from the GPU. The x86 cores can also access the
framebuffer using the FCL.

The APU consists of a dedicated IOMMUv2 hardware
that can provide a direct mapping between the GPU and the
CPU virtual address space. IOMMUv2 also allows the GPU
to track whether a page is resident in memory and bring it in
memory on demand, which means that an application is no
longer limited to the amount of available system memory or
to the size of the GPU framebuffer. However, in the present-
generation APUs, the GPU cores can access the x86 virtual
address space only at a granularity of continuous chunks of
memory, and not at a granularity of one page. This limitation
curbs the programmer to pass a host-side pointer to the GPU
and use indirect addressing mechanisms to access the entire
memory region.

The GPU cores on the AMD Trinity APU feature a
VLIW4 design in which each SIMD engine consists of 16
four-way VLIW thread processors. Each thread processor
consists of one branch execution unit. There are six SIMD
engines in total, amounting to 384 ALUs on the entire GPU.
Each SIMD engine has its own local data store and texture
caches. The GPU can run at a maximum of 800 MHz.
Programming on the APU is facilitated by the emerging
OpenCLTM standard [11]. We use OpenCLTM terminology
in the rest of this article.



B. B+ Trees

B+ trees were instrumental in optimizing the disk I/O by
virtue of several characteristics: (i) they have a very high
fan-out (i.e., large number of branches at each node); (ii)
they are always height-balanced (i.e., all the leaf nodes are
at the same level); (iii) they keep related data within the
same block or a disk page, which takes advantage of the
locality of reference; and (iv) they guarantee that all the
nodes are full at least to a certain percent, thus improving
space efficiency. For example, a B+ tree with a branching
factor of 1001 and a height of two can store more than 1B
keys, and it requires only two disk accesses to find a key
because the root node can be stored in main memory.

In a B+ tree, the records (or values) are stored only in
the leaf nodes, whereas the internal nodes store the search-
keys for those records. The branching factor or the order
of a B+ tree measures the capacity of each of its nodes.
A node in a B+ tree of order ‘m’ contains up to ‘m’
branches (or children) and up to ‘m-1’ search-keys. The
leaf nodes of the tree are linked to form a linked list to
allow faster processing of range-search queries. The order
of a B+ tree is instrumental in affecting the memory access
patterns because a higher-order tree translates to less height
and hence, fewer disk or memory accesses. A well-known
optimization technique to minimize disk accesses is to have
the order of a tree be such that each node of the tree fits in
one page of the disk. However, for in-memory databases it
may be worthwhile to investigate having trees with a smaller
order to optimize for the number of cache hits [12].

Index search in a B+ tree is performed as an iterative
process between searching the keys in a node and then
traversing to the next node in the tree, until the value being
searched is found in one of the leaf nodes.

III. IMPLEMENTATION

In this section, we present an overview of our APU
implementation followed by a deep dive into the details
of our memory allocator which transforms the B+ tree to
a contiguous memory layout. We then discuss how we
eliminate thread-divergence.

A. Overview

Today’s GPU cores lack the ability to indirectly address
the x86 virtual address space (i.e., one cannot use pointers
to traverse from one node to another node in the tree, as
mentioned in Section II-A). However, a tree is generally
built using the dynamic memory allocation functions like
malloc() and new() in the CPU realm, and hence cannot be
traversed on the GPU as-is. Therefore, the entire tree must
be laid out in a contiguous memory location and traversed
using offsets, as described in Section III-B.

B+ tree searches can be accelerated using the follow-
ing two approaches: (i) accelerating a single query across
the entire APU (i.e., via fine-grained parallelism), or (ii)

performing multiple queries simultaneously in parallel (i.e.,
via coarse-grained parallelism). The fine-grained approach
replaces the binary search to be performed at every node to
find the next node in the search path, by K-ary search, and
parallelizes it across the APU. The maximum performance
benefit one can obtain by this approach is log(K)/log(2). To
keep the APU busy and to hide the memory-access latency,
a node should contain tens of thousands of elements to be
searched. Realistically, databases employ B+ trees with at
most 200 elements in every node. Therefore, this approach
does not provide enough work to maintain high occupancy
of the APU. The coarse-grained approach, on the other hand,
executes batches of queries in parallel. Because search-
queries in a B+ tree are data-parallel, they efficiently map
onto the APU. The coarse-grained approach also benefits
from the parallel reads from various work-items on the APU,
which results in better utilization of the available memory
bandwidth.

Specifically, we assign one work-item on the APU to
execute one search-query. We launch 256 work-items, or
four wavefronts, in a work-group to have enough work-items
in flight to hide the memory-access latency. A maximum
of 32,768 work-items (the upper bound on the APU) are
launched; if the number of queries in a batch is greater than
that, more than one query is assigned to a work-item. We
do not launch more work-items to reduce the scheduling
overhead. We perform register preloading to utilize the
registers present in the SIMD engine efficiently [13]. The
top of the tree may get cached in the L1 cache of the SIMD
engines because it is accessed by all the work-items, though
that depends on the order of the tree. Higher order entails a
node being wider, so it may not fit in a cache line. Section IV
presents an analysis between performance and the order of
the tree. The kernel for our APU implementation is shown
in Figure 2.

The coarse-grained approach results in a substantial
amount of divergence within a wavefront because adjacent
work-items may follow completely different paths in the
tree, as illustrated in Figure 3. In the figure, work-item
#1 is tasked to search for key 1 and work-item #2 is
tasked to search for key 7. Both of these keys reside on
different paths from the root and result in divergence. The
execution of divergent branches is serialized because there
is only one instruction sequencer present per SIMD engine
to perform the predication. Ideally, the adjacent work-items
should follow similar paths as much as possible. Referring
back to Figure 3, this means that work-item #2 should search
for key 2 and so on. One way to achieve this execution
pattern is to sort the search-keys before assigning them to
work-items, as described in Section III-C.

B. Transforming the Memory Layout

We developed a memory allocator to ensure that the tree
is laid out in a continuous memory region. Specifically, we



1 // TYPE is the datatype of the <key, value> pair
2 global void B+TreeSearch(void *root, TYPE *search_keys,
3 TYPE *values) {
4 int tid = get_global_id(0);
5 int lid = get_local_id(0);
6 node n = ((global node *) root)[0];
7 TYPE key_to_search = search_keys[tid];
8 local TYPE values_found[256];
9

10 // find the leaf node
11 while( !n->is_leaf) {
12 while( n->num_keys_in_node) {
13 /* find the first key in the node
14 greater than key_to_search */
15 }
16 n = (root + offset_into_next_child_node);
17 }
18
19 // match the key in the leaf node
20 while( n->num_keys_in_node) {
21 /* break when a (key == key_to_search) */
22 }
23
24 // retrieve the value
25 values_found[lid] = (root + offset_to_the_value);
26 barrier(CLK_MEM_FENCE);
27 values[tid] = values_found[lid];
28 }

Figure 2. Pseudocode of the APU kernel for B+ tree searches.
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Figure 3. Illustration of divergence in the coarse-grained approach of
B+ tree searches. (WI - Work-Item).

allocate a sufficiently large buffer and represent the tree in
it in the following order: first, all the nodes along with some
metadata; next, all the keys for every node; and, finally, all
the values for those keys. A pictorial representation of our
tree layout is illustrated in Figure 4. If the tree outgrows the
allocated buffer, we allocate a new buffer that is twice as
big as the previous one and copy the tree into it. We do not
modify the inherent data structure and only lay the B+ tree in
a different way. We do not store the keys in the nodes to keep
the nodes small, and fit as many nodes as possible in a cache-
line of the GPU. There is a high probability that the adjacent
nodes and keys would be traversed by various work-items,
thereby improving the memory subsystem performance. The
metadata allows us to access the keys and values present
elsewhere in the buffer; it consists of (i) number of keys, (ii)
offset to the first key, (iii) offset to the first child node/value
and (iv) a flag to check whether the node is a leaf node.

The buffer is created using the OpenCLTM flag
CL_MEM_ALLOC_HOST_PTR, which lets the GPU access
the host memory either by pinning it or via IOMMUv2.
A pointer to the buffer is then passed as an argument to
the OpenCLTM kernel as shown in Figure 2. The process of
transforming the memory layout of the tree is not free but it

.. .. .. 
nodes w/ metadata keys values 

Figure 4. Pictorial representation of the modified B+ tree in memory.
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Figure 5. Impact of divergence due to the coarse-grained approach.

is likely to be performed only once. The cost of transforming
the memory layout decreases with the increase in the order
of the tree (i.e., wider tree results in faster transformation).
This is because a deeper tree results in a greater number
of memory accesses, which adversely affects performance.
With the advances in the AMD HSA, this step is expected
to be eliminated in future.

C. Eliminating the Divergence

The coarse-grained parallelization approach results in
a high number of divergent branches. To overcome this
challenge, we sort the search-keys before assigning them to
the work-items. This increases the probability that adjacent
work-items follow similar paths in the tree. We use radix
sort for this purpose and our implementation is based on
the work by Merrill et al. [14].

Figure 5 illustrates the impact of divergence due to the
coarse-grained approach on the AMD Trinity APU and the
AMD PhenomTM II X6 1090T CPU, for varying orders and
number of queries of the B+ tree. The impact has been
computed by executing the searches on a B+ tree with 4M
keys, with and without sorting the keys, and calculating the
difference in execution times of only the kernel. The average
impact on the APU is 3.0x while that on the CPU it is 1.8x.
The maximum impact on the APU can be as high as 4.1x.
The lower impact on the CPU can be attributed to the fact
that the CPU has only four-way wide SIMD units, whereas
the GPU cores have 64-way wide SIMD units. Sorting the
search-keys does not incur substantial costs because no extra
data-copies are required.

IV. RESULTS AND DISCUSSION

In this section, we first explain our experimental set-up
and illustrate the performance results of our coarse-grained
B+ tree searches on the APU compared to a hand-tuned,
SSE-optimized, six-core CPU implementation. For the sake



of completeness, we also compare our results to a high-end
dGPU. We then present an analysis of (i) the relationship
between the order of the B+ tree and the performance
achieved on all three platforms and (ii) the cost of data-
copies on the APU and the dGPU.

A. Experimental Set-up

We have used two accelerators for our study: (i) an
AMD A10 Trinity APU that combines a four-core AMD
FX CPU, codenamed Piledriver, running at a base clock
of 3.8 GHz and an AMD Radeon HD 7660 GPU, and
(ii) an AMD Radeon HD 7970 dGPU, codenamed Tahiti.
An overview of the accelerators is presented in Table I.
These were programmed via the AMD OpenCLTM SDK v2.6
with OpenCLTM v1.2 programming model and the AMD
CatalystTM driver version 12.8. The test machine with the
APU has 4 GB of 1600 MHz DDR3 SDRAM. The host
machine for the dGPU consists of an AMD PhenomTM II X6
1090T six-core CPU running at 3.2 GHz with 8 GB DDR3
SDRAM. The operating system used is a 64-bit version of
Windows 7. All of our results are an average of 500 runs.

Table I
OVERVIEW OF ACCELERATORS

Accelerator AMD Trinity AMD Radeon
A10 APU HD 7970 GPU

CPU 4-core Piledriver CPU N.A.
Compute Units (CU) 6 32
VLIW 4-way N.A.
Processing Elements 384 2048
Core Clock Rate 800 MHz 925 MHz
Memory Clock Rate 1600 MHz 1375 MHz
Memory Bus type DDR3 GDDR5
Frame Buffer size 1024 MB (configurable) 3072 MB
Peak Memory Bandwidth 25.6 GB/s 264 GB/s
Local Memory (LDS)
per CU 32 KB 64 KB
L1 Cache Size per CU 8 KB 16 KB
Registers per CU 256 KB 64 KB
Single Precision FP
Performance 736 GFLOPS 3,789 GFLOPS

For experimental purposes, we have created a B+ tree
with 4M entries. An example database table for such a tree
is shown in Table II. For the CPU implementation, the tree
is represented in memory in the original layout without
any transformations. Batches of keys ranging from 16K-
128K search-keys are created using normal distribution()
and the Mersenne Twister pseudo-random number generator
in C++-11 to ensure that our tests access the entire tree.
We use sorted keys on all three platforms. We based our
CPU implementation on the implementation from Amittai
Aviram [15]. It has been extended to use hand-tuned SSE
intrinsics and parallelized using the OpenMPTM program-
ming model. The performance numbers have been collected
for varying orders of the B+ tree, ranging from four to 128.

Table II
SAMPLE DATABASE TABLE USED

Emp. ID (P Key) Age
0000001 34

4 million entries
4194304 50

B. Performance

In this section, we present the queries per second (in mil-
lions) (MQPS) achieved by our coarse-grained implementa-
tion of B+ tree searches on the following three platforms: (i)
a 6-core CPU, (ii) an APU and (iii) a high-end dGPU. For
the accelerators, we illustrate results for both when the tree
is present in the GPU device memory1 and in the system
memory (referred to as pinned memory henceforth). When
using pinned memory, the buffer has been marked cacheable.

Figure 6a shows the MQPS achieved by our implementa-
tion on a six-core CPU and a dGPU. When the tree resides
in the device memory, our implementation on the dGPU
can perform 346 MQPS (average) and 714 MQPS (best-
case). When the tree does not reside in the device memory,
the dGPU can perform only 10 MQPS on average. This is
because every memory access needs to go over the PCIe
bus that is an order of magnitude slower than the dGPU
memory subsystem. The optimized CPU implementation can
perform 18 MQPS. Therefore, the only way to achieve better
performance on a dGPU is by copying the entire tree to the
dGPU device memory, which limits the size of the tree that
can be operated on.

Figure 6b shows the MQPS achieved by our implemen-
tation on a six-core CPU and an APU. When the tree
resides in the device memory, our APU implementation
can perform 66 MQPS (average) and 118 MQPS (best-
case). When the tree resides in the pinned memory, the
APU can perform 40 MQPS (average) and 70 MQPS(best-
case). These numbers are as expected when one takes into
account that the APU is approximately only one-fifth as
powerful as the dGPU. The RMB is used when the tree
resides in the device memory and the FCL is used when
the tree is in the pinned memory. The performance while
using pinned memory is affected because the FCL is slower
than the RMB, as described in Section II-A. The APU
implementation is faster than the 18 MQPS achieved on
the CPU even when the tree is not copied to the device
memory, thereby demonstrating the potential of the APU in
eliminating the data-copies and alleviating the constraint on
the size of the problem to be accelerated.

Figure 6 shows that the performance on accelerators
improves with the increase in number of keys to be searched,
irrespective of the order of the tree and its location in
memory. This is because the large number of searches
translate to a larger number of work-items to be launched,

1Results for device memory do not include the time to copy the data to
the device.
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(a) AMD Radeon HD 7970 Tahiti dGPU
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Figure 6. Performance.
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Figure 7. Speed-up. Baseline: six-threaded, hand-tuned, SSE-optimized
CPU implementation.

which in turn results in improved latency hiding of memory
accesses and hence, better performance. We also note that
the CPU and the accelerators provide optimum performance
for different orders of the B+ tree, for reasons explained in
Section IV-C.

In Figure 7, we present the speed-up attained by our
APU implementation compared to a six-threaded, hand-
tuned, SSE-optimized CPU implementation. We note that
the maximum of 10x speed-up is attained for device memory
and order = 4. The average speed-up when device memory
is used is 4.3x. Though the orders 4 and 8 do not form a
realistic use-case for B+ trees, these results are significant
for application domains that use quad- or oct-trees. When the
tree has not been copied to the device memory, the average
speed-up is 2.5x while the maximum speed-up attained is
4.9x. Barring the case when the number of search-queries is
16K, the pinned memory implementation on the APU always
outperforms the CPU.

We also developed a proof of concept to demonstrate the
efficacy of the IOMMUv2 and the AMD HSA on the APU.

Pla$orm	  
Size	  of	  the	  B+	  Tree	  

<	  1.5GB	   1.5GB	  –	  2.7GB	   >	  2.7GB	  
Discrete	  GPU	  (memory	  size	  =	  3GB)	   ✓	   ✓	   ✗	  
APU	  (prototype	  so2ware)	   ✓	   ✓	   ✓	  

Figure 8. Efficacy of IOMMUv2 + AMD HSA on the APU.

Figure 8 illustrates that the APU can traverse a tree larger
than the memory size on a dGPU. Specifically, our tests tra-
versed trees with up to 110M keys on the APU. We collected
this result using prototype software wherein we modified the
OpenCLTM runtime to remove the restriction on the size of
the OpenCLTM buffer that can be created. Therefore, the
HSA and IOMMUv2 will enable two advantages, which
are especially beneficial for the big data applications: (i)
eliminating data-copies and (ii) eliminating the limitation
on the amount of memory available.

C. Analysis

Figure 6 demonstrates that considering any one batch
size, both CPU and the accelerators achieve the best-case
performance for different orders of the B+ tree. For the
CPU, this order is 64 and for the accelerators, it is 16. Higher
orders yield better performance on the CPU. We believe that
this is due to the ability of the CPUs to prefetch data. The
keys and child-offsets in a node are laid out sequentially
which results in a simple memory access pattern, thereby
enabling the CPU prefetcher to be quite effective in loading
this data into the cache before it is required. For larger
orders of the B+ tree, the prefetcher is more efficient because
the data prefetched is actually used by the application,
thus resulting in more cache hits. For smaller orders, the
application often requires a new node, that may not be laid
out next to the current node in the memory, and so the
CPU prefetcher does not provide substantial benefit. This is
corroborated by the profiling numbers provided by the AMD
CodeAnalyst [16]. Larger orders result in a fewer number
of cache misses than the tree with small orders.

The accelerators have a cache-line size of 64 bytes but
they do not have a prefetcher. Therefore, the ideal perfor-
mance should be obtained when an entire cache-line is most
efficiently used. In our accelerated implementation, the keys
and values, both 4 bytes each, are laid out sequentially,
which means that a B+ tree with an order of 16 should
be most efficient. An order of 16 means each node ap-
proximately holds 64 bytes to store 16 keys or values (i.e.,
16 ∗ 4 = 64). The same is corroborated by Figure 6 which
depicts that the best performance on the APU or the dGPU
is achieved when the order of the B+ tree is 16.

Given that we know the order of the tree for which the
CPU and the accelerators perform the best (i.e., 64 and 16,
respectively), we computed the minimum batch size required
to match the CPU performance. For order = 16, the dGPU
(device memory) requires at least 2K search-keys batched
together, whereas for order = 64 it requires 4K batched



queries. Having the tree resident in the pinned memory does
not enable the dGPU to match CPU’s performance for any
number of queries. When using the pinned memory, the
APU requires 10K and 20K queries, whereas when using the
device memory, it requires 4K and 10K queries for orders
16 and 64, respectively.

Figure 6 shows that the performance on both the dGPU
and the APU is much better when the tree is copied to
device memory because device memory provides accesses
at a higher bandwidth than system memory. However, when
one takes into account the cost of copying the data to the
device, the performance ceases to be impressive, at least
if the tree is used only once to perform the search. We
performed an analysis to compute the reuse factor, defined
as the number of times a tree must be reused to amortize
the cost of copying the tree to the accelerator. The equations
we used are:

T imeaccel = Tcopy + (TacclExec ∗ reuse factor)

T imecpu = TcpuExec ∗ reuse factor

or reuse factor <= Tcopy/(TcpuExec − TacclExec)

Table III depicts the reuse factor for the accelerators to
perform as well as the CPU for two cases: (i) for 90% of
the total queries and (ii) for all queries. The table illustrates
that copying the tree to the accelerator comes at a great cost
that cannot always be amortized, as in the case of the APU
for 100% queries, and should be avoided when possible. This
further strengthens the case for accelerators to eliminate the
data-copies for optimal performance, which the APUs have
proved capable of accomplishing, as illustrated in figure 7.

Table III
REUSE FACTOR TO AMORTIZE THE COST OF COPYING

Platform 90% Queries 100% Queries
dGPU 15 54
APU 100 N.A.

V. RELATED WORK

B+ trees were designed to accelerate disk-based database
management systems [17]. As main memory capacities have
increased, substantial research has been carried out on the
CPUs to optimize in-memory databases. Lehman et al.
proposed T-trees specifically tuned for the main memory
index structure [18]. Rao et al. argued that although T-trees
provide less storage overhead, they are cache-inefficient and
proposed the use of cache-conscious B+ trees called the
CSB+ trees [12]. Research has also been carried out to find
the optimum node size of a B+ tree. In [19], Hankens et al.
proposed the node size of the tree should be greater than the
cache-line size for efficient use of the TLB. Prefetching has
also been proposed to improve the performance of B+ tree
searches by optimizing for both disk I/O and the caches [20],
[21].

The recent rise in the adoption of dGPUs has made them
a popular platform to accelerate database searches. In [22],
Kim et al. presented a novel, architecture-sensitive layout of
the index tree to accelerate searches on modern CPUs and
dGPUs. They proposed the use of a binary tree optimized
for architecture features like page size, cache-line size, and
the SIMD width. In [23], [24], authors proposed the use of a
dictionary structure to benefit from the massive parallelism
on the dGPUs to accelerate relational query co-processing.
Bakkum et al. accelerated SQLite queries on the dGPU
by transforming the database to a row-column format [25].
Therefore, all of them proposed a change in the inherent
data structure used by the databases (i.e., the B+ tree).

Sewall et al. presented latch-free modifications to B+ trees
on many-core processors using the bulk synchronous par-
allel model to perform multiple queries on in-memory
B+ trees [26]. Heimel et al. proposed the use of dGPUs for
query optimization which however, is not as significant as
the actual query execution [27]. They argued that the query
execution phase is plagued by the fundamental constraints of
dGPUs, and hence is not suitable for acceleration. Fix et al.
used braided parallelism to accelerate B+ tree searches on
a dGPU [28]. They used a modified memory representation
of a B+ tree that can be effectively used on the dGPU.

In this paper, we accelerated B+ tree searches on the APU.
To the best of our knowledge, we are the first to do so. APUs,
while preserving all the virtues of dGPUs, improve on their
biggest criticism, which is that they eliminate the need to
copy the data to the GPU. Our approach does not modify
the inherent data structure used in databases, unlike those
discussed. All we do is modify the representation of the
B+ tree in memory, a step that is expected to be eliminated
in coming years with the advances in the AMD HSA.

VI. CONCLUSIONS AND FUTURE WORK

B+ trees are used heavily in database management sys-
tems; hence, accelerating tree search is critical. Accelerating
data-parallel problems is the stronghold of dGPUs. Although
tree search is data-parallel, it presents significant challenges
for acceleration, primarily due to the irregular memory
representation of the tree and the cost of copying the tree
to the dGPU. To overcome these challenges, we use the
accelerated processing unit (APU) to accelerate B+ tree
searches. The APU helps eliminate the need to copy the
data over the slow PCIe bus. We reorganize the B+ tree in
memory to form a regular representation and exploit the
coarse-grained parallelism in tree searches. Of particular
importance, we do not modify the inherent data structure
used in the databases. Our APU implementation can perform
up to 70M queries per second and results in a 4.9x (best-
case) and 2.5x (on average) speed-up over a six-threaded,
hand-tuned, SSE-optimized, CPU implementation.

Our implementation, at present, requires us to reorganize
the B+ tree in a contiguous memory region. We particularly



want to eliminate this step with the use of IOMMUv2 and
the AMD HSA. The use of the similar data structure on both
the CPU and GPU cores opens up the possibility of CPU-
GPU co-scheduling, which is also assisted by the fact that
the APU bridges the gap between them like never before.
In the future, we would also like to enhance our APU
implementation to perform modifications on the B+ tree and
then work on accelerating a real-world database management
system on the APU.
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